Antibiotic Resistance and Production of Extended Spectrum β-Lactamases by Clinical Gram-negative Bacteria in Benin

Main Article Content

Wassiyath Moussé
Haziz Sina
Ibrahima A. Mama-Sirou
Eugénie Anago
Durand Dah-Nouvlessounon
Christine N’Tcha
Farid Bade
Sévérin Anagonou
Adolphe Adjanohoun
Lamine Baba-Moussa

Abstract

Aims: The aim of this work was to determine the resistance profile and to investigate the production of extended spectrum β-lactamases (ESBL) by clinically relevant Gram-negative Bacillus (GNB) strains.

Methodology: About 191 strains were isolated from 1823 samples collected at the HKM National Hospital and University Center of Cotonou (Benin). Species identification was done with the Api 20th gallery. Two methods were used to search for β-lactamase production: the liquid acidimetric test for penicillinases and double halo method for ESBL. The susceptibility to conventional antibiotic molecules was investigated by the disk diffusion method. Polymerase Chain Reaction (PCR) was used to identify blaTEM and blaSHV genes in the β-lactamases.

Results: A prevalence of 10.48% of GNB was recorded. Among the isolated strains, 51.31% came from samples collected from in-patients and 48.69% from out-patients’ samples. The most contaminated samples were urine (43.98%), pus (34.58%) and blood (9.42%). Majority of the isolated species included: Klebsiella pneumoniae (28.27%), Acinetobacter spp. (18.32%), Pseudomonas aeruginosa (15.72%), Escherichia coli (14.15%) and Enterobacter cloacae (12.04%). More than the half (57.07%) of the strains produced penicillinases; whereas 16.76% were ESBL-producers and these occurred only among Klebsiella pneumoniae, Enterobacter cloacae, Escherichia coli and Enterobacter agglomerans. The ESBL-producing strains were cross-resistant to beta-lactams. Imipenem is the most effective antibiotic on all isolated strains. ESBL-producing GNB strains possessed both the blaTEM gene and the blaSHV gene in a proportion of 25%; 37.5% of the strains had only the blaTEM gene and 12.5% of the strains had only the blaSHV gene.

Conclusion: ESBL-producing strains of K. pneumonia in the hospital environment were the major carriers of blaTEM and blaSHV. Given this situation, it is necessary to continue research to identify resistance genes.

Keywords:
Gram-negative bacilli, ß-lactamases, antibiotics, clinic, Benin.

Article Details

How to Cite
Moussé, W., Sina, H., Mama-Sirou, I., Anago, E., Dah-Nouvlessounon, D., N’Tcha, C., Bade, F., Anagonou, S., Adjanohoun, A., & Baba-Moussa, L. (2019). Antibiotic Resistance and Production of Extended Spectrum β-Lactamases by Clinical Gram-negative Bacteria in Benin. Journal of Advances in Microbiology, 18(2), 1-13. https://doi.org/10.9734/jamb/2019/v18i230158
Section
Original Research Article

References

Fauci AS. Infectious diseases: Considerations for the 21st century. Clin Infect Dis. 2001;32:675-685.
DOI: 10.1086/319235

Walsh C. Antibiotics: Actions, origins, resistance. Washington DC, ASM Press. 2003;345.

Pages JM. Porines bactériennes et sensibilité aux antibiotiques. Médecine/Sciences. 2004;20(3):346-351. DOI: 10.1051/medsci/2004203346

Munita JM, Arias CA. Mechanisms of Antibiotic Resistance. Microbiol Spectr. 2016;4(2). DOI:10.1128/microbiolspec.VMBF-0016-2015

Gajdács M, Urbán E. Resistance Trends and Epidemiology of Citrobacter-Enterobacter-Serratia in Urinary Tract Infections of Inpatients and Outpatients (RECESUTI): A 10-year survey. Medicina. 2019;55(6):285.Available:https://doi.org/10.3390/medicina55060285

Gajdács M, Urbán E. Comparative epidemiology and resistance trends of Proteae in urinary tract infections of inpatients and outpatients: A 10-year retrospective study. Antibiotics. 2019;8(3): 91. Available:https://doi.org/10.3390/antibiotics8030091

Gajdács M, Urbán E. Epidemiological trends and resistance associated with Stenotrophomonas maltophilia Bacteremia: A 10-year retrospective cohort study in a tertiary-care hospital in Hungary. Diseases. 2019;7(2):41.
Available:https://doi.org/10.3390/antibiotics8030091

Aminov RI. A brief history of the antibiotic Era: Lessons learned and challenges for the future. Front Microbiol. 2010;1:134. Available:http://doi.org/10.3389/fmicb.2010.00134

Fair RJ, Tor Y. Antibiotics and bacterial resistance in the 21st century. Perspect Medicin Chem. 2014;6:25–64.
DOI: 10.4137/PMC.S14459

Mirabaud MI. Entérobactéries à béta-lactamases à spectre élargi en pédiatrie en 1996. Thèse de doctorat en médecine. Suisse : Université de Genève. 2003;52.

Prestinaci F, Pezzotti P, Pantosti A. Antimicrobial resistance: A global multifaceted phenomenon. Pathog Glob Health. 2015;109(7): 309-318.
DOI: 10.1179/2047773215Y.0000000030

Jasovský D, Littmann J, Zorzet A, Cars O. Antimicrobial resistance-a threat to the world’s sustainable development. Upsala J Med Sci. 2016;121(3):159-164.
DOI: 10.1080/03009734.2016.1195900

Gajdács M. The concept of an ideal antibiotic: Implications for drug design. Molecules. 2019;24(5):892.
Available:https://doi.org/10.3390/molecules24050892

Rossolini GM, Mantengoli E. Antimicrobial resistance in Europe and its potential impact on empirical therapy. Clin Microbiol Infect. 2008;14(Suppl 6):2-8.
DOI: 10.1111/j.1469-0691.2008.02126

Ouedraogo AS, Pierre HJ, Banuls AL, Ouedraogo R, Godreuil S. Émergence et diffusion de la résistance aux antibiotiques en Afrique de l’Ouest: Facteurs favorisants et évaluation de la menace. Méd Santé Trop. 2017;27(2):147-154.
DOI: 10.1684/mst.2017.0678

Camara M, Diop-Ndiaye H, Ba-Diallo A, Karam F, Mbow M, Faye A, Diop-Diop M, Diagne-Samb A, Toupane M, Mbengue AS, Toure-Kane NC, Mboup S, Gaye-Diallo A. Epidémiologie des souches de Klebsiella pneumoniae productrices de β-lactamases à spectre élargi dans un hôpital universitaire au Sénégal, 2011. Revue du CAMES: Science de la santé. 2014;1(2):33-37.

Paterson DL. Recommendation for treatment of severe infections caused by Enterobacteriaceae producing extended-spectrum β-lactamases (ESBLs). Clin Microbiol Infect. 2000;6(9):460-463.

Paterson DL, Ko WC, Von Gottberg A, Mohapatra S, Casellas JM, Goossens H, Mulazimoglu L, Trenholme G, Klugman KP, Bonomo RA, Rice LB, Wagener MM, McCormack JG, Yu VL. International prospective study of Klebsiella pneumoniae bacteremia: Implications of extended-spectrum βlactamase productions in nosocomial infections. Ann Intern Med. 2004;140:26-32.

Slama TG. Gram-negative antibiotic resistance: There is a price to pay. Critical Care. 2008;12(4):S4.
DOI: 10.1186/cc6820

Alsan M, Schoemaker L, Eggleston K, Kammili N, Kolli P, Bhattacharya J. Out-of-pocket health expenditures and antimicrobial resistance in low-income and middle-income countries: An economic analysis. The Lancet Infect Dis. 2015; 15(10):1203-1210.
DOI: 10.1016/S1473-3099(15)00149-8

Hara T, Sato T, Horiyama T, Kanazawa S, Yamaguchi T, Maki H. Prevalence and molecular characterization of CTX-M extended-spectrum beta-lactamase-producing Escherichia coli from 2000 to 2010 in Japan. Jpn. J. Antibiot. 2015; 68(2):75-84.

Duval V, Maiga I, Maiga A, Guillard T, Brasme L, Forte D, De Champs C. High prevalence of CTX-M-type β-lactamases among clinical isolates of Enterobacteriaceae in Bamako, Mali. Antimicrob Agents Chemother. 2009; 53(11):4957-4958.
DOI: 10.1128/AAC.00675-09

Ogbolu DO, Daini OA, Ogunledun A, Alli AO, Webber MA. High levels of multidrug resistance in clinical isolates of Gram-negative pathogens from Nigeria. Int J Antimicrob Agents. 2011;37(1):62-66.
DOI: 10.1016/j.ijantimicag.2010.08.019.

Breurec S, Guessennd N, Timinouni M, Le TTH, Cao V, Ngandjio A, Randrianirina F, Thiberge JM, Kinana A, Dufougeray A, Perrier-Gros-Claude JD, Boisier P, Garin B, Brisse S. Klebsiella pneumoniae resistant to third-generation cephalosporins in five African and two Vietnamese major towns: Multiclonal population structure with two major international clonal groups, CG15 and CG258. Clin Microbiol Infect. 2013;19(4): 349-355.
DOI: 10.1111/j.1469-0691.2012.03805.x

Tande D, Boisrame-Gastrin S, Münck MR, Hery-Arnaud G, Gouriou S, Jallot N, Naas T. Intrafamilial transmission of extended-spectrum-β-lactamase-producing Escherichia coli and Salmonella enterica Babelsberg among the families of internationally adopted children. J Antimicrob Chemother. 2010;65(5):859-865.
DOI: 10.1093/jac/dkq068

Kasap M, Fashae K, Torol S, Kolayli F, Budak F, Vahaboglu H. Characterization of ESBL (SHV-12) producing clinical isolate of Enterobacter aerogenes from a tertiary care hospital in Nigeria. Ann Clin Microbiol Antimicrob. 2010;9(1):1.
DOI: 10.1186/1476-0711-9-1

Canton R, Coque TM. The CTX-M β-lactamase pandemic. Curr Opin Microbiol. 2006;9(5):466-475.
DOI: 10.1016/j.mib.2006.08.011

Forbes BA, Sahm DF, Weissfeld AS. Specimen management. In: Bailey & Scott's Diagnostic Microbiology, 12th ed, Mosby, Elsevier, St. Louis. 2007;1056.

Wilson ML. General principles of specimen collection and transport. Clin Infect Dis. 1996;22:766.

CA-SFM (Commission de l’Antibiotique de la Société Française de Microbiologie). Recommandations 2015 du comite de l’antibiogramme de la Société Française de Microbiologie. 2015;117.

Koneman E. Test for determining inhibitory. In: Koneman’s color atlas and textbook of diagnostic microbiology, fifth ed. Lippincott Williams and Wilkins; 2006.

CLSI (Clinical and Laboratory Standards Institute). Performance standards for antimicrobial susceptibility testing; Wayne, PA: Clinical and Laboratory Standards Institute. Nineteenth Informational Supplement. 2009;M100-S19.

Gajdács M, Ábrók M, Lázár A, Burián K. Comparative epidemiology and resistance trends of common urinary pathogens in a tertiary-care hospital: A 10-year surveillance study. Medicina. 2019;55(7): 356. Available:https://doi.org/10.3390/medicina55070356

Gangoué-Piéboji J, Bedenic B, Koulla-Shiro S, Randegger C, Adiogo D, Ngassam P, Hächler H. Extended-spectrum-β-lactamase-producing Enterobacteriaceae in Yaounde, Cameroon. J. Clin Microbiol. 2005;43(7): 3273-3277.
DOI: 10.1128/JCM.43.7.3273-3277.2005

Nüesch-Inderbinen MT, Hächler H, Kayser FH. Detection of genes coding for extended-spectrum SHV beta-lactamases in clinical isolates by a molecular genetic method, and comparison with the E test. Eur. J. Clin. Microbiol Infecti Dis. 1996; 15(5):398-402.

Ahoyo AT, Baba-Moussa L, Anago AE, Avogbe P, Missihoun TD, Loko F, Dramane K. Incidence d'infections liées à Escherichia coli producteur de bêta lactamase à spectre élargi au Centre hospitalier départemental du Zou et Collines au Bénin. Méd Mal Infect. 2007; 37(11):746-752.
Available:https://doi.org/10.1016/j.medmal.2007.03.004

Espinasse F, Page B, Cottard-Boulle B. Risques infectieux associés aux dispositifs médicaux invasifs. Rev Franç Lab. 2010; (426):51-63. Available:https://doi.org/10.1016/S1773-035X(10)70692-4

Abreu AC, Tavares RR, Borges A, Mergulhão F, Simões M. Current and emergent strategies for disinfection of hospital environments. J. Antimicrob Chemother. 2013;68(12):2718-2732.
DOI: 10.1093/jac/dkt281

Ghazi M, Khanbabaee G, Fallah F, Kazemi B, Mahmoudi S, Navidnia M, Pourakbari B. Emergence of Pseudomonas aeruginosa cross-infection in children with cystic fibrosis attending an Iranian referral pediatric center. Iranian J. Microbiol. 2012; 4(3):124-129.

Kader AA, Kumar A. Prevalence and antimicrobial susceptibility of extended spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in a general hospital. Ann Saudi Med. 2005;25(3):239-242.

Toudji AG, Djeri B, Karou SD, Tigossou S, Ameyapoh Y, De Souza C. Prévalence des souches d’entérobactéries productrices de bêta-lactamases à spectre élargi isolées au Togo et de leur sensibilité aux antibiotiques. Int J. Biol Chem Sci. 2017; 11(3):1165-1177. Available:http://dx.doi.org/10.4314/ijbcs.v11i3.19

Hailaji NSM, Salem MO, Ghaber SM. La sensibilité aux antibiotiques des bactéries uropathogènes dans la ville de Nouakchott–Mauritanie. Prog Urol. 2016; 26(6);346-352.
Available:http://dx.doi.org/10.1016/j.purol.2016.04.004

Endimiani A, Luzzaro F, Migliavacca R, Mantengoli E, Hujer AM, Hujer KM, Toniolo A. Spread in an Italian hospital of a clonal Acinetobacter baumannii strain producing the TEM-92 extended-spectrum β-lactamase. Antimicrob Agents Chemother. 2007;51(6):2211-2214. DOI: 10.1128/AAC.01139-06

Mirelis B, Navarro F, Miró E, Mesa RJ, Coll P, Prats G. Community transmission of extended-spectrum β-lactamase. Emerg Infect Dis. 2003;9(8):1024.
DOI: 10.3201/eid0908.030094

Valverde A, Coque TM, Sanchez-Moreno MP, Rollan A, Baquero F, Canton R. Dramatic increase in prevalence of fecal carriage of extended-spectrum β-lactamase-producing Enterobacteriaceae during nonoutbreak situations in Spain. J Clinl Microbiol. 2004;42(10):4769-4775. DOI: 10.1128/JCM.42.10.4769-4775.2004

Alibayov B, Baba-Moussa L, Sina H, Zdenkova´ K, Demnerova K. Staphylococcus aureus mobile genetic elements. Mol Biol Rep. 2014;41(8):5005-2018.
DOI 10.1007/s11033-014-3367-3

Rodloff AC, Goldstein EJC, Torres A. Two decades of imipenem therapy. J Antimicrob Chemother. 2006;58:916–929. DOI:10.1093/jac/dkl354

Cattoir V, Bicetre F. Les Nouvelles bêta-lactamases à spectre étendu (BLSE). Pathologie Infectieuse en Réanimation. 2008;204-209.

WHO (Word Heath Organisation). Résistance aux antimicrobiens; 2016. (Accessed August 24, 2018)
Available:http://www.who.int/mediacentre/factsheets/fs194/fr/

Dougnon VT, Johnson RC, Bankole HS, Koudjale B, Hounmanou G, Baba-Moussa L, Boko M. Évaluation de la Performance de trois marques de disques d’antibiotiques Vendues au Benin. Health Sci Dis. 2016;17(4):71-78.

Aibinu IE, Ohaegbulam VC, Adenipekun EA, Ogunsola FT, Odugbemi TO, Mee BJ. Extended-spectrum β-lactamase enzymes in clinical isolates of Enterobacter species from Lagos, Nigeria. J Clin Microbiol. 2003; 41(5):2197-2200.

Rawat D, Nair D. Extended-spectrum β-lactamases in gram negative bacteria. J Glob Infect Dis. 2010;2(3):263–274. DOI:10.4103/0974-777X.68531

Nedjai S, Barguigua A, Djahmi N, Jamali L, Zerouali K, Dekhil M, Timinouni M. Prevalence and characterization of extended spectrum β-lactamases in Klebsiella-Enterobacter-Serratia group bacteria, in Algeria. Méd Mal Infect. 2012; 42(1):20-29.
DOI: 10.1016/j.medmal.2011.10.001

Guessennd N, Bremont S, Gbonon V, Kacou-Ndouba A, Ekaza E, Lambert T, Courvalin P. Qnr-type quinolone resistance in extended-spectrum beta-lactamase producing enterobacteria in Abidjan, Ivory Coast. Pathologie-Biologie. 2008;56(7-8): 439-446.

Roh KH, Uh Y, Kim JS, Kim HS, Shin DH, Song W. First outbreak of multidrug-resistant Klebsiella pneumoniae producing both SHV-12-type extended-spectrum β-lactamase and DHA-1-type AmpC β-lactamase at a Korean hospital. Yonsei Med J. 2008;49(1):53-57. DOI: 10.3349/ymj.2008.49.1.53

Gniadkowski M (). Evolution of extended-spectrum β-lactamases by mutation. Clinical Microbiology and Infection. 2008;14:11-32.
DOI: 10.1111/j.1469-0691.2007.01854.x

Philippon A. Les bêta-lactamases à spectre élargi ou étendu (BLSE). Immuno-analyse & Biologie Spécialisée. 2013; 28(5-6):287-296. Available:https://doi.org/10.1016/j.immbio.2013.04.006

Touati A, Brasme L, Benallaoua S, Madoux J, Gharout A, De Champs C. Enterobacter cloacae and Klebsiella pneumoniae isolates producing CTX-M-15 recovered from hospital environmental surfaces from Algeria. J Hosp Infect. 2008; 68(2):183-185.
DOI: 10.1016/j.jhin.2007.11.001

Touati A, Zenati K, Brasme L, Benallaoua S, De Champs C. Extended-spectrum β-lactamase characterisation and heavy metal resistance of Enterobacteriaceae strains isolated from hospital environmental surfaces. J. Hosp. Infect. 2010;75(1):78-79.
DOI: 10.1016/j.jhin.2010.01.001