Alleviation of Salt Stress on Wheat (Triticum aestivum L.) by Plant Growth Promoting Bacteria strains Bacillus halotolerans MSR-H4 and Lelliottia amnigena MSR-M49

Main Article Content

Ibrahim El-Akhdar
Tamer Elsakhawy
Hanaa A. Abo-Koura


The plant growth-promoting rhizobacteria (PGPR) application could reduce the use of synthetic fertilizers and increase the sustainability of crop production. Halophilic bacteria that have PGPR characteristics can be used in different environmental stresses. Two different strains isolated, purified, characterized as a PGPRs and phylogenetic identification using 16sRNA which was revealed to be closest matched at 99% with Bacillus halotolerans and Lelliottia amnigena. The isolates possessed plant growth promoting properties as exopolysaccharides (EPS) and indole acetic acid (IAA) production, Bacillus halotolerans had the ability to fix elemental nitrogen and the two strains have the ability to P-solubilization. Furthermore, the strains were evaluated in alleviation of different levels of salt stress on wheat plant at two experiments (Pots and a Field). Strains under study conditions significantly increased the plant height, straw dry weight (DW g plant-1), spike number, 1000 grain DW recorded 31.550 g with Lelliottia amnigena MSR-M49 compared to un-inoculated and other strain in field,  grain yield recorded 2.77 (ton fed-1) with Lelliottia amnigena  as well as N% and protein content in grains recorded 1.213% and 6.916 respectively with  inoculation with Lelliottia amnigena,  also, spikes length, inoculated wheat show reduction in both proline accumulation in shoots and roots especially with Lelliottia amnigena recorded 2.79 (mg g-1DW), inoculation significantly increased K+ in root-shoot, K+/Na+ in root-shoot and reduced Na+ in root-shoot compared with control. This confirmed that this consortium could provide growers with a sustainable approach to reduce salt effect on wheat production.

Wheat, salinity, PGPRs, 16sRNA, Bacillus halotolerans, Lelliottia amnigena, nitrogen fixation

Article Details

How to Cite
El-Akhdar, I., Elsakhawy, T., & Abo-Koura, H. A. (2020). Alleviation of Salt Stress on Wheat (Triticum aestivum L.) by Plant Growth Promoting Bacteria strains Bacillus halotolerans MSR-H4 and Lelliottia amnigena MSR-M49. Journal of Advances in Microbiology, 20(1), 44-58.
Original Research Article


Zahran HH. Diversity, adaptation and activity of the bacterialflora in saline environments. Biol Fert Soils. 1997;25: 211–223.

Rengasamy P. World salinization with emphasis on Australia. J. Exp. Bot. 2006; 57:1017–1023.

Porcel R, Aroca R, Ruiz-Lozano JM. Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agron. Sustain. Dev. 2012;32:181–200.
DOI: 10.1007/s13593-011-0029.

Parida AK, Das AB. Salt tolerance and salinity effect on plants: A review. Ecotoxicol. Environ. Saf. 2005;60:324–349.

Larcher W. Physiological plant ecology. 2nd totally rev. edition ed. Berlin/New York: Springer-Verlag. 1980;33.

Ramadoss D, Lakkineni VK, Bose P, Ali S, Annapurna K. Mitigation of salt stress in wheat seedlings by halo tolerant bacteria isolated from saline habitats. Springer Plus. 2013;2(1):1.

Saeed MM, Ashraf M, Asghar MN, Bruen M, Shafique MS. Root zone salinity management using fractional skimming wells with pressurized irrigation. Regional Office for Pakistan, Central Asia and Middle East, Lahore, International Water Management Institute (IWMI). 2001;46:12.

De Zélicourt A, Al-Yousif M, Hirt H. Rhizosphere microbes as essential partners for plant stress tolerance. Mol. Plant. 2013;6:242–245.
DOI: 10.1093/ mp/sst028

Timmusk S, Behers L, Muthoni J, Muraya A, Aronsson AC. Perspectives and challenges of microbial application for crop improvement. Front. Plant. Sci. 2017;8:49.
DOI: 10.3389/fpls..00049

Kotuby-Amacher J, Koenig K, Kitchen B. Salinity and plant tolerance; 2000.


Munns R, Tester M. Mechanisms of salinity tolerance. Annual Review of Plant Biology. 2008;59:651-681.

Rady MM. Effect of 24-epibrassinolide on growth, yield, antioxidant system and cadmium content of bean (Phaseolus vulgaris L.) plants under salinity and cadmium stress. Sci. Hort. 2011;129:232-237.

Radhakrishnan R, Lee IJ. Effect of low dose of spermidine on physiological changes in salt stressed cucumber plants. Russ. J. Plant Physiol. 2014;61:90–96.
DOI: 10.1134/S1021443714010129

Lugtenberg B, Jand Kamilova F. Plant-growth-promotingrhizobacteria. Ann Rev Microbiol. 2009;63:541–556.

Ahmad M, Zahir ZA, Nazli F, Akram F, Muhammad A, Khalid M. Effectiveness of halotolerant, auxin producing Pseudomonas and Rhizobium strains to improve osmotic stress tolerance in mung bean (Vigna radiata L.). Braz J.Microbiol. 2013;44:1341–1348.

Lucy M, Reed E, Glick BR. Applications of free living plant growth- promoting rhizobacteria. Antonie Van Leeuwenhoek. 2004;86:1–25.

Gray EJ, Smith DL. Intracellular and extracellular PGPR: Commonalities and distinctions in the plant–bacterium signaling processes. Soil Biol Biochem. 2005;37:395–412.

Bloemberg GV, Lugtenberg BJJ. Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr. Opin Plant Biol. 2001;4:343–350.

Van Loon LC. Plant responses to plant growth-promotingrhizobacteria. Eur. J. Plant Pathol. 2007;119:243–254.

Kang SM, Radhakrishnan R, Lee KE, You YH, Ko JH, Kim H. Mechanism of plant growth promotion elicited by Bacillus sp. LKE15 in oriental melon. Acta. Agric. Scand. Sect. B. Soil Plant Sci. 2015a;65: 637–647.
DOI: 10.1080/09064710..1040830

Kilian M, Steiner U. Krebs B, Junge H, Schmiedeknecht G, Hain BR. FZB24R Bacillus subtilis - mode of action of a microbial agent enhancing plant vitality. Pflanzenschutz Nachr. Bayer. 2000;1:72–93.

Ngugi H, Dedej S, Delaplane K, Savelle A, Scherm H. Effect of flower-applied Serenade biofungicide (Bacillus subtilis) on pollination related variables in rabbit eye blueberry. Biol. Control. 2005;33:32–38.
DOI: 10.1016/j. biocontrol. 01.002

Cawoy H, Bettiol W, Fickers P, Ongen M. Bacillus-based biological control of plant diseases. In Pesticides in the Modern World - Pesticides Use and Management, ed Stoytcheva (InTech Academic Press). 2011;273–302.

Hashem A, Abd Allah EF, Alqarawi AA, Al-Huqail AA, Wirth S, Egamberdieva D. The interaction between arbuscular mycorrhizal fungi and endophytic bacteria enhances plant growth of Acacia gerrardii under salt stress. Front. Microbiol. 2016;7:1089.
DOI: 10.3389/fmicb. 01089

Hashem A, Abd Allah EF, Alqarawi A, Al-Huqail A, Shah MA. Induction of osmoregulation and modulation of salt stress in Acacia gerrardii benth. by arbuscular mycorrhizal fungi and Bacillus subtilis (BERA 71). Bio. Med. Res. Int. 2016;6294098.
DOI: 10.1155/2016/6294098

Radhakrishnan R, Hashem A, Abd Allah EF. A biological tool for crop improvement through bio-molecular changes in adverse environments front. Physiol. 2017;8:667.
DOI: 10.3389/fphys. 00667

Ashraf M, Hasnain S, Erge B, Mahmood T. Inoculating wheat seedlings with exopoly saccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress. Biol. Fertil. Soils. 2004;40:157-62.

Han Q, Lu QXP, Bai JP, Qiao Y, Pare PW, Wang SM, Zhang JL. Beneficial soil bacterium Bacillus subtilis (GB03) augments salt tolerance of white clover. Front. Plant Sci. 2014;5:525.
DOI: 10.3389/fpls..00525

Hashem A, Abd Allah EF, Alqarawi AA, AL-Huqail AA, Alshalawi SRM, Wirth S. Impact of plant growth promoting Bacillus subtilis on growth and physiological parameters of Bassia indica (Indian bassia) grown udder salt stress. Pak. J. Bot. 2015;47:1735–1741.

Jha Y, Subramanian RB. Paddy physiology and enzymes level is regulated by rhizobacteria under saline stress. J. Appl. Bot. Food Qual. 2012;173:168–173.

Karlidag H. Plant growth-promoting rhizobacteria mitigate deleterious effects of salt stress on strawberry plants (Fragaria xananassa). Hortic. Sci. 2013;48:563–567.

Tiwari SK. Salt-tolerant rhizobacteria-mediatedinduced tolerance in wheat (Triticum aestivum) and chemicaldiversity in rhizosphere enhance plant growth. Biol. Fertility Soils. 2011;47:907–916.

Leite HAC, Silva AB, Gomes FP, Gramacho KP, Faria JC, De Souza OJT, Guercio LLL. Bacillus subtilis and Enterobacter cloacae endophytes from healthy Theobroma cacae L. trees can systemically colonize seedlings promote growth. Appl. Microbiol. Biotechnol. 2013; 97:2639-2651.
DOI: 10.1007/soo253-012-454-2

Luo SL, Chen L, Chen JL, Xiao X, Xu TY, An Rao WY, Liu CCB, Liu YT, Lai C, Zeng GM. Analysis and characterization of cultivable heavy metal-resistant bacterial endophytes isolated from Cd-hyper accumulator Solanum nigrum L. and their potential use for phytoremediation. Chemosphere. 2011;85(7):1130-1138.

Hallmann J, Quadt-Hallmann A, Mahaffee JWF, Kloepper W. Bacterial endophytes in agricultural crops. Can. J. Microbiol. 1997; 43(10):895-914.

Naveed M, Mitter B, Yousa SF, Pastar M, Afzal M, Sessitsch A. The endophyte Enterobacter sp. FD17: A maize growth enhancer selected based on rigorous testing of plant beneficial traits and colonization characteristics. Biol. Fertil. Soils. 2014;50(2):249-262.

Talboys Peter J, Darren WO, Jo RH, Hn W, Paul JA, David LJ. Auxin secretion by Bacillus amyloliquefaciens FZB42 both stimulates root exudation and limits phosphorus uptake in Triticum aestivium. Plant Biology. 2014;14:51.

Singh RP, Nalwaya S, Jha PN. The draft genome sequence of the plant growth promoting rhizospheric bacterium Enterobacter cloacae SBP-8. Genomics Data. 2017;12:81–83.
DOI: 10.1016/j. g data. 03.006

Coulson TJ, Patten CL. Complete genome sequence of Enterobacter cloacae UW5, a rhizobacterium capable of high levels of indole-3-acetic acid production. Genome Announc. 3:e008. 2015;43–15.
DOI: 10.1128/genome A. 00843-15

Baig KS, Arshad M, Shaharoona B, Khalid A, Ahmed I. Comparative effectiveness of Bacillus spp. possessing either dual or single growth-promoting traits for improving phosphorus uptake, growth and yield of wheat (Triticum aestivum L.). Ann. Microbiol. 2012;62:1109–1119.

Somasegaran P, Hoben HJ. Handbook for rhizobia: Methods in legume-rhizobium technology. University of Hawaii, Nif. TAL Project. Edi. Springer-Verlag, USA. 1994;450.

Altschul SF, Madde TL, Zhang J, Miller W. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997;25: 3389–3402.
DOI: 10.1093/nar/25.17.3389

Edgar RC. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32: 1792– 1797.
DOI: 10.1093/nar/gkh340

Saitou N, Nei M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution. 1987;4:406-425.

Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J.Mol. Evol. 1980;16:111–120.
DOI: 10.1007/BF01731581. 45.

Kumar S, Stecher G, Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016;33:1870–1874.
DOI: 10.1093/ molbev/msw054

Gilickmann E, Dessaux YA. Critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopathogenic bacteria Appl. Environ. Micobiol. 1995;61(2):793-796.

Damery JT, Alexander M. Physiological differences between effective and ineffective strains of Rhizobium. Soil Science. 1968;108(3):209-216.

Hardy RWF, Burns RCL, Holsten RD. Application of the acetylene-ethylene reduction assay for measurement of nitrogen fixation. Soil Biol. Biochem. 1973;5:47–81.

Pikovskaya RI. Mobilization of phosphorus in soil in connection with the vital activity of some microbial species. Microbiology. 1948;17:362-370.

Richards LA. Diagnosis and improvement of saline and alkali soils. Agriculture Handbook No.60,U.S. Department of Agriculture, Washington, D.C. 1954;12-15.

Jackson ML. Soil chemical analysis, prentice-hall. Inc,. Englewood Cliffs, N. J. Methods of Analysis for Soils, Plants, and Waters. 1958;193-197.

Chapman HD, Parker FP. Methods of analysis for soils, plants and waters. University of California, Division of Agricultural Sciences. 1963;309.

Black CA, Ewans OD, Ensminger LE, White JL, Clark FE, Dinaver RC. Methods of soil analysis part 2 chemical and microbiological properties 2nd, Soil Sci. Soc. of Am. Inch. Publ., Madison, Wisconsin, U.S.A. 1982;1572.

Snell FD, Snell CT. Colorimetric methods of analysis 1967;4a.

Jackson ML. Soil chemical analysis. Prentice Hall of India, New Delhi. 1967; 144-197:326-338.

Nornai R. Formula for determination of chlorophyll pigments extracted with N.N. dimethylformamide. Plant Physiol. 1982; 69:1371-1381.

Bates LS, Waldrem RP, Tear ID. Rapid determination of free proline for water stress studies. Plant Soil. 1973;39:205-207.

Wolf BA. Comprehensive system of leaf analysis and its use for diagnosing crop nutrient status. Commun Soil Sci. Plant Anal. 1982;13:1035- 1059.

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution. 2013; 30:2725-2729.

Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences (USA). 2004;101:11030-11035.

Furkan O. Alleviation of salt stress by halotolerant and halophilic plant growth-promoting bacteria in wheat (Triticum aestivum). Brazilian Journal of Micro-biology. 2016;47:621–627.

Julie R, Cheryl R, Patten L. Aromatic amino acid-dependent expression of indole-3-pyruvate decarboxylase is regulated by TyrR in Enterobacter cloacae UW5. Journal of Bacteriology. 2008; 190(21):7200-8.
DOI: 10.1128/JB.00804-08

Ahmad P, Abdel Latef AA, FAbd Allah E, Hashem A, Sarwat M, Anjum NA. Calcium and potassium supplementation enhanced growth, osmolyte secondary metabolite production and enzymatic antioxidant machinery in cadmium-exposed chickpea (Cicer arietinum L.). Front. Plant Sci. 2016; 7:513.
DOI: 10.3389/fpls.2016.00513

Zhang H, Xie X, Kim MS, Kornyeyev DA, Holaday S, Pare PW. Soil bacteria augment Arabidopsis photosynthesis by decreasing glucose sensing and abscisic acid levels in plant. Plant. J. 2008;56:264–273.

Dhanushkodi R, Vithal KL, Pranita B, Sajad A, Kannepalli A. Mitigation of salt stress in wheat seedlings by halotolerant bacteria isolated from saline habitats. Springer Plus. 2013;2:1-7.

Rifat H, Rabia KH, Muhammad E, Iftikhar A, Safdar A. Molecular characterization of Soil bacteria for improving crop yield in Pakistan. Pak. J. Bot. 2013;45:1045- 1055.

Torbaghan ME, Amir L, Ali RA, Amir F, Hossein B. Salt and alkali stresses reduction in wheat by plant growth promoting haloalkaliphilic bacteria. Journal of Soil Science and Plant Nutrition. 2017; 17(4):1058-1073.

Baig KS, Arshad M, Shaharoona B. Comparative effectiveness of Bacillus spp. possessing either dual or single growth-promoting traits for improving phosphorus uptake, growth and yield of wheat (Triticum aestivum L.). Ann Microbiol; 2011.
DOI: 10.1007/s13213-011-0352-0

Singh S, Kapoor KK. Inoculation with phosphate solubilizing microorganisms and a vesicular arbuscular mycorrhizal fungus improves dry matter yield and nutrient uptake by wheat grown in a sandy soil. Biology and Fertility of Soils. View at Google Scholar. 1999;28:139–144.

Ghosh S, Penterman JN, Little RD, Chavez R, Glick BR. Three newly isolated plant growth-promoting bacilli facilitate the growth of canola seedlings. Plant Physiology and Biochemistry. 2003;41: 277–281.

Mohite B. Isolation and characterization of indole acetic acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growth. J. Soil Sci. Plant Nutr. 2013;13:638-649.

Gutierrez Maneˆro FJ, Ramos Sola B, Prob A. Anza, Mehouachi J, Tadeo FR, Talon M. The plant growth-promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiol. Plantarum. 2001;111:1–7.

Richardson AE, Barea JM, McNeill AM, Combaret CP. Acquisition of phosphorous nitrogen in the rhizosphere and plant growth promotion by microorganism. Plant Soil. 2009;321:305–339.
DOI: 10.1007/s11104- 009-9895-2

Kang S, Radhakrishnan R, Khan AL, Kim M, Park J, Kim B. Gibberell in secreting rhizobacterium, Pseudomonas putida H-2-3modulates the hormonal and stress physiology of soybean to improve the plant growth under saline and drought conditions. Plant Physiol. Biochem. 2014;84:115–124.
DOI: 10.1016/j. plaphy. 09.001

Ozturk L, Demir Y. In vivo and in vitro protective role of proline. Plant Growth Regul. 2002;38:259-264.

Sheteawi SA, Tawfik KM. Interaction effect of some bio fertilizers and irrigation water regime on mung bean (Vigna radiate) growth and yield. J. of Appl. Sci. Res. 2007;3:251-262.

Soleimani RA, Alikhani H, Towfighi K, Khavazi. Indole-3-acetic acid and 1-aminocyclopropane-1-carboxylate deaminize-producing bacteria alleviate sodium stress and promote wheat growth. Iran. J. Sci. Technol. Trans., Sci. 2016;1-12.

Marulanda AR, Azcon F, Chaumont JM, Ruiz-Lozano, Aroca R. Regulation of plasma membrane aquaporins by inoculation with a Bacillus megaterium strain in maize (Zea mays L.) plants under unstressed and salt-stressed conditions. Planta. 2010;232:533–543.
DOI: 10.1007/s00425-010-1196-8

Girmay K. Phosphate solubilizing micro-organisms: Promising approach as biofertilizers. International Journal of Agronomy. 2019;Article ID 4917256:7.