Effect of Lactic Acid on Inactivation of Enterotoxigenic Escherichia Coli (ETEC) Isolated from Tuna Loins Produced in Côte D’Ivoire

Main Article Content

Andree Emmanuelle Sika
Yolande Ake-Assi
Therese Anoman
Ollo Kambire
Rose Koffi-Nevry
Koffi Marcellin Dje


Aims: The aim of this work was to study the effect of lactic acid on the growth of pathogenic strains of Escherichia coli (ETEC) isolated from tuna loins.

Study Design: Bacteriological study.

Place and Duration of Study: Laboratory of Microbiology of the Central Laboratory of Food hygiene and Agrobusiness (LCHAI), Abidjan, Côte d’Ivoire between September 2014 and December 2014.

Methodology: Enterotoxigenic Escherichia coli (ETEC) strains were isolated from tuna loins. Lactic acid (LA) 1%, 2% and 3% were tested in pathogenic strains in liquid medium (brain heart infusion broth, BHI) and in tuna loins.

Results: At lactic acid 1%, the bacterial loads decreased during the first two days and then stabilized. E. coli strains in tuna loins were higher (1.25 to 0.9 log CFU/g) than E. coli in liquid medium (0.69 to 0.3 log CFU/g). No bacterial growth was observed in the tuna loins and in BHI for concentrations of 2% and 3% of lactic acid.

Conclusion: Lactic acid has an inhibitory effect at 1% and bactericidal effect at 2% and 3% on the growth of E. coli. The use of lactic acid as a preservative could be a solution for the preservation of these products.

Enterotoxigenic Escherichia coli (ETEC), lactic acid (LA), tuna loins, brain heart infusion broth (BHI).

Article Details

How to Cite
Sika, A. E., Ake-Assi, Y., Anoman, T., Kambire, O., Koffi-Nevry, R., & Dje, K. M. (2020). Effect of Lactic Acid on Inactivation of Enterotoxigenic Escherichia Coli (ETEC) Isolated from Tuna Loins Produced in Côte D’Ivoire. Journal of Advances in Microbiology, 20(4), 41-50. https://doi.org/10.9734/jamb/2020/v20i430235
Original Research Article


Gözde Ekici, Emek Dümen. Escherichia coli and food safety. The Universe of Escherichia coli, Marjanca Starčič Erjavec, IntechOpen; 2019.
DOI: 10.5772/intechopen.82375

EFSA (European Food Safety Authority) and ECDC (European Centre for Disease Prevention and Control) The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2015. EFSA Journal. 2016;14:4634–4865.

Qadri F, Svennerholm A, Faruque A. Sack R. Enterotoxigenic Escherichia coli in developing countries: Epidemiology, microbiology, clinical features, treatment, and prevention. Clinical Microbiology Reviews. 2005b;18:465-484.
DOI: 10.1128/CMR.18.3.465-483.2005

Levine M. Escherichia coli that cause diarrhea: enterotoxigenic, enteropatho-genic, enteroinvasive, enterohemorrhagic, and enteroadherent. Journal of Infectious Diseases. 1987;155:377-389.

Uçar G, Yörük NG, Güner A. Escherichia coli infections. Turkiye Klinikleri Journals Food Hygiene Technology. 2015;1(3):22-29.

Zhang W, Sack DA. Current progress in developing subunit vaccines against enterotoxigenic Escherichia coli-associated diarrhea. Clinical and Vaccine Immunology. 2015;22(9):983-991.

Donnenberg MS. Escherichia coli Pathotypes and principles of pathogenesis. Baltimore, Maryland, USA: International Encyclopedia of Public Health. 2017;585-593.

Dutta P, Dutta S. Acute diarrhoea in children. In: Banerjee S., editor. Textbook of community and social paediatrics. 2nd ed. Jaypee Brothers Medical Publishers LTD; New Delhi, India; 2008.

Dadonaite B, Ritchie H, Roser M. "Diarrheal diseases";2020.

Published online at OurWorldInData.org Available:https://ourworldindata.org/diarrheal-diseases' [Online Resource]

DPH (Direction of Halieutic Production). Annuaire des statistiques des pêches et de l’aquaculture. Service des études, des statistiques et de la documentation. Document technique. 2009;25.

Sika AE, Kambire O, Boli ZBIA, Aké-Assi Y, Koffi-Nevry R. Virulence genes and antibiotic resistance profile of Escherichia coli strains isolated from tuna loins and flakes produced in Côte d’Ivoire. International Journal of Current Microbiology and Applied Sciences. 2018; 7(09):3329-3338.

Lindqvist R, Lindblad M.. Inactivation of Escherichia coli, Listeria monocytogenes and Yersinia enterocolitica in fermented sausages during maturation/storage. International Journal of Food Microbiology. 2009;129:59-67.

Buchanan R, Edelson S. pH-dependent stationary-phase acid resistance response of enterohemorrhagic Escherichia coli in the presence of various acidulants. Journal of Food Protection. 1999;62:211-218.

Juneja V, Marmer B, Eblen B. Predictive model for the combined effect of temperature, pH, sodium chloride and sodium pyrophosphate on the heat resistance of Escherichia coli O157:H7. Journal of Food Safety. 1999;19:147-160.

Sanaa M. Microbiologie prévisionnelle: Principaux modèles de croissance utilisés en appréciation quantitative des risques. Epidémiologie et Santé Animale. 2002; 41: 169-177.

Skandamis P, Stopforth J, Kendall P, Belk K, Scanga J, Smith G, Sofos J. Modeling the effect of inoculum size and acid adaptation on growth/no growth interface of Escherichia coli O157:H7. International Journal of Food Microbiology. 2007;120: 237–249.

Spyropoulou K, Chorianopoulos N, Skandamis P, Nychas G. Survival of Escherichia coli O157:H7 during the fermentation of Spanish-style green table olives (Conservolea variety) supplemented with different carbon sources. International Journal of Food Microbiology. 2001;66:3-11.

Sutherland J, Bayliss A, Braxton D, Beumont A. Predictive modelling of Escherichia coli O157:H7: Inclusion of carbon dioxide as a fourth factor in a pre-existing model. International Journal of Microbiology. 1997;37:113–120.

Cho G, Lee M, Choi C. Survival of Escherichia coli O157:H7 and Listeria monocytogenes during kimchi fermentation supplemented with raw pork meat. Food Control. 2011;22:1253-1260.

Huang Y, Chen H. Effect of organic acids, hydrogen peroxide and mild heat on inactivation of Escherichia coli O157:H7 on baby spinach. Food Control. 2011;22: 1178 —1183.

Official Journal of the European Union. Commission Regulation (EU) No 101/2013 of 4 February 2013 concerning the use of lactic acid to reduce microbiological surface contamination on bovine carcases. 2013;3.

Alakomi HL, Skytta E, Saarela M, Mattila-Sandholm T, Latva-Kala K, Helander IM. Lactic acid permeabilizes Gram-negative bacteria by disrupting the outer membrane. Applied Environmental Microbiology. 2000; 66:2001–2005.

Forsythe, SJ. Microbiologia da segurança dos alimentos. 2. ed. São Paulo: Artmed. 2013;607.

Al-Holy MA, Castro LF, Al-Qadiri HM. Inactivation of Cronobacter spp. (Enterobacter sakazakii) in infant formula using lactic acid, copper sulfate and monolaurin. Letters in Applied Microbiology. 2010;50:246–251.

Salam A. Ibrahima, Hong Yang, Chung W. Seo. Antimicrobial activity of lactic acid and copper on growth of Salmonella and Escherichia coli O157:H7 in laboratory medium and carrot juice. Food Chemistry. 2008;109(1):137-143.

Nascimento, EPS. Effect of lactic acid on microbiological, physical-chemical and sensory characteristics in the meat of the sun. 2011. Dissertation (Master in Chemical Engineering). Universidade Federal do Rio Grande do Norte, Natal; 2011.

Beyaz D, Tayar M. The effect of lactic acid spray application on the microbiological quality of sheep Carcasses. Journal of Animal and Veterinary Advances. 2010; 9(13):1858-1863.

Soares KMP, Silva JBA, Gois VA. Use of lactic acid and its sodium salt in meat and meat products: A review. Food Hygiene. 2017;31:67-72.

Smittle R. Microbiological safety of Mayonnaise, salad dressings and sauces reduced in the United States: A review. Journal of Food Protection. 2000;63: 1144–1153.

Presser K, Ross T, Ratkowsky D. Modelling the growth limits (growth/no growth interface) of Escherichia coli as a function of temperature, pH, lactic acid concentration and water activity. Applied and Environmental Microbiology. 1999;64: 1773–1779.

Niksic M, Niebuhr S, Dickson J, Mendonca A, Koziczkowski J, Ellingson J. Survival of Listeria monocytogenes and Escherichia coli O157:H7 during Sauerkraut fermenta-tion. Journal of Food Protection. 2005; 68(7):1367-1374.