Journal of Advances in Microbiology

  • About
    • About the Journal
    • Submissions & Author Guideline
    • Accepted Papers
    • Editorial Policy
    • Editorial Board Members
    • Reviewers
    • Propose a Special Issue
    • Reprints
    • Subscription
    • Membership
    • Publication Ethics and Malpractice Statement
    • Digital Archiving Policy
    • Contact
  • Archives
  • Indexing
  • Publication Charge
  • Submission
  • Testimonials
  • Announcements
Advanced Search
  1. Home
  2. Archives
  3. 2022 - Volume 22 [Issue 9]
  4. Review Article

Submit Manuscript


Subscription



  • Home Page
  • Author Guidelines
  • Editorial Board Member
  • Editorial Policy
  • Propose a Special Issue
  • Membership

Microbial Normal Flora: Its Existence And Their Contribution To Homeostasis

  • Lusia Sri Sunarti

Journal of Advances in Microbiology, Page 1-15
DOI: 10.9734/jamb/2022/v22i930483
Published: 17 June 2022

  • View Article
  • Download
  • Cite
  • References
  • Statistics
  • Share

Abstract


Aims: To describe the existence of microbial normal flora and its contribution to homeostasis, with emphasize on several major systems of the human body.


Discussion: Normal microflora are a group of various microorganisms that reside in the bodies of all humans or animals. These organisms are consistently exist, and relatively stable, with specific genera populating various body regions during particular periods in an individual's life, from shortly after birth until death. The indigeneous normal microbiota provides a first line of defense against microbial pathogens, assists in digestion, and contributes to maturation of the immune system and in general able to assists the anatomy, physiology, susceptibility to pathogens, and even morbidity of the host. Several internal factors like age and external factors like geographical position, diets habbits, the condition of stress, infection and even antibiotics consumption, are some factors that can affect the function of normal microflora.


Conclusion: Normal microbial microflora consistently inhabits some region of the body and influences the hots’s homeostasis. Several factors such as diets, stress, infection and antibiotics administration, can affect the existence and performance of normal microflora.


Keywords:
  • Microbiota
  • indigeneous
  • interaction
  • diets
  • biological age
  • stress
  • antibiotics
  • Full Article – PDF
  • Review History

How to Cite

Sunarti, L. S. (2022). Microbial Normal Flora: Its Existence And Their Contribution To Homeostasis. Journal of Advances in Microbiology, 22(9), 1-15. https://doi.org/10.9734/jamb/2022/v22i930483
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver

References

Baohong W, Mingfei Y, Longxian LV, Zongxin L, Lanjuan L. The Human Microbiota in Health and Disease, Engineering. 2017;3(1):71-82.
Available:https://doi.org/10.1016/J.ENG.2017.01.008

Davis CP. Normal Flora. In: Baron S, editor. Medical Microbiology. 4th ed. Galveston (TX): University of Texas Medical Branch at Galveston; 1996. Chapter 6. PMID: 21413249.

Dekaboruah E, Suryavanshi M, Chettri D. Human microbiome: an academic update on human body site specific surveillance and its possible role. Arch Microbiol. 2020;202: 2147–67.
Available:https://doi.org/10.1007/s00203-020-01931-x

Bhardwaj, S. B. Gut Flora: In the Treatment of Disease. In: Mozsik, G. editor. The Gut Microbiome - Implications for Human Disease [Internet]. London: IntechOpen; 2016 [cited 2022 Jun 07]. Available:https://www.intechopen.com/chapters/52073 https://doi.org/ 10.5772/65073

Wu HJ, Wu E. The role of gut microbiota in immune homeostasis and autoimmunity. Gut Microbes. 2012; 3(1):4-14.
Available:https://doi.org/10.4161/gmic.19320

Esser D, Lange J, Marinos G, Sieber M, Best L, Prasse D, Bathia J, Rühlemann MC, Boersch K, Jaspers C, Sommer F. Functions of the Microbiota for the Physiology of Animal Meta organisms. J Innate Immun. 2019;11(5):393-404.
Available:https://doi.org/10.1159/000495115

Salerian AJ. What is the Origin of Human Bacterial Flora? J Appl Environ Microbiol. 2020;8(1):1-5.
Available:https://doi.org/ 10.12691/jaem-8-1-1

Mueller NT, Bakacs E, Combellick J, Grigoryan Z, Dominguez-Bello MG. The infant microbiome development: mom matters. Trends Mol Med. 2015;21(2):109-17.
Available:https://doi.org/10.1016/j.molmed.2014.12.002

Hamady M, Knight R. Microbial community profiling for human microbiome projects: Tools, techniques, and challenges. Genome Res. 2009;19(7):1141-1152.
Available:https://doi.org/10.1101/gr.085464.108

Lianmin C, Daoming W, Sanzhima G, Kurilshikov A, Vila AV, Gacesa R, et al. The long-term genetic stability and individual specificity of the human gut microbiome. Cell. 2021;184(9):2302-15.e12. Available:https://doi.org/10.1016/j.cell.2021.03.024.

Lloyd-Price J, Abu-Ali G. Huttenhower C. The healthy human microbiome. Genome Med. 2016;8:51.
Available:https://doi.org/10.1186/s13073-016-0307-y

Eckburg PB, Bik EM, Bernstein CN. Diversity of the human intestinal microbial flora. Science. 2005;308(5728):1635-1638. Available:https://doi.org/10.1126/science.1110591

Leeming ER, Johnson AJ, Spector TD, Le Roy CI. Effect of Diet on the Gut Microbiota: Rethinking Intervention Duration. Nutrients. 2019;11(12):2862. Published 2019 Nov 22.
Available:https://doi.org/10.3390/nu11122862

Zhu F, Tu H, Chen T. The Microbiota-Gut-Brain Axis in Depression: The Potential Pathophysiological Mechanisms and Microbiota Combined Anti-depression Effect. Nutrients. 2022;14(10):2081.
Available:https://doi.org/10.3390/nu14102081.

Plummer EL, Vodstrcil LA, Fairley CK. Sexual practices have a significant impact on the vaginal microbiota of women who have sex with women. Sci Rep. 2019;9: 19749.
Available: https://doi.org/10.1038/s41598-019-55929-7

Ramirez J, Guarner F, Bustos FL, Maruy A, Sdepanian VL, Cohen H. Antibiotics as Major Disruptors of Gut Microbiota. Frontiers in Cellular and Infection Microbiology. 2020;10.
Available:https://doi.org/10.3389/fcimb.2020.572912

Song SD, Acharya KD, Zhu JE, Deveney CM, Walther-Antonio MR, Marina RS, et al. Daily Vaginal Microbiota Fluctuations Associated with Natural Hormonal Cycle, Contraceptives, Diet, and Exercise. mSphere. 2020;5(4).
Available:https://doi.org/10.1128/mSphere.00593-20

Berg G, Rybakova D, Fischer D. Microbiome definition re-visited: old concepts and new challenges. Microbiome. 2020;8:103.
Available:https://doi.org/10.1186/s40168-020-00875-0

The Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486:207–14.
Available:https://doi.org/10.1038/nature11234

Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE. Defining the normal bacterial flora of the oral cavity. J Clin Microbiol. 2005;43(11):5721-5732.
Available:https:/doi.org/10.1128/JCM.43.11.5721-5732.2005

Willis JR, Gabaldón T. The Human Oral Microbiome in Health and Disease: From Sequences to Ecosystems. Microorganisms. 2020;8(2):308.
Available:https://doi.org/10.3390/microorganisms8020308

Sharma N, Bhatia S, Sodhi AS, Batra N. Oral microbiome and health. AIMS Microbiol. 2018;4(1):42-66.
Available:https://doi.org/10.3934/microbiol.2018.1.42

Deo PN, Deshmukh R. Oral microbiome: Unveiling the fundamentals. J Oral Maxillofac Pathol. 2019;23(1):122-8.
Available:https://doi.org/10.4103/jomfp.JOMFP_304_18

Dong L, Yin J, Zhao J. Microbial Similarity and Preference for Specific Sites in Healthy Oral Cavity and Esophagus. Front Microbiol. 2018;9:1603.
Available:https://doi.org/10.3389/fmicb.2018.01603

Ajayi TA, Cantrell S, Spann A, Garman KS. Barrett's esophagus and esophageal cancer: Links to microbes and the microbiome. PLoS Pathog. 2018; 14(12):e1007384. Available:https://doi.org/10.1371/journal.ppat.1007384

Choi DH, Park J, Choi JK. Association between the microbiomes of tonsil and saliva samples isolated from pediatric patients subjected to tonsillectomy for the treatment of tonsillar hyperplasia. Exp Mol Med. 2020;52;1564–73.
Available:https://doi.org/10.1038/s12276-020-00487-6

Wang G, Zhang M, Zhao J, Xia Y, Lai PF, Ai L. A Surface Protein From Lactobacillus plantarum Increases the Adhesion of Lactobacillus Strains to Human Epithelial Cells. Front Microbiol. 2018;9:2858. Available:https://doi.org/10.3389/fmicb.2018.02858

Krishnan K, Chen T, Paster BJ. A practical guide to the oral microbiome and its relation to health and disease. Oral Dis. 2017;23(3):276-286. Available:https://doi.org/10.1111/odi.12509

Ryutaro J, Nishimoto Y, Umezawa K, Yama K, Aita Y, Ichiba Y, et al. Comparison of oral microbiome profiles in stimulated and unstimulated saliva, tongue, and mouth-rinsed water. Scientific Reports. 2019;9:16124.
Available:https://doi.org/10.1038/s41598-019-52445-6.

Ingala MR, Simmons NB, Wultsch C, Krampis K, Speer KA, Perkins SL. Comparing Microbiome Sampling Methods in a Wild Mammal: Fecal and Intestinal Samples Record Different Signals of Host Ecology, Evolution. Front Microbiol. 2018;9:803. Available:https://doi.org/:10.3389/fmicb.2018.00803

Singh RK, Chang HW, Yan D. Influence of diet on the gut microbiome and implications for human health. J Transl Med. 2017;15(1):73.
Available:https://doi.org/10.1186/s12967-017-1175-y

Tang Q, Jin G, Wang G, Liu T, Liu X, Wang B, Cao H. Current Sampling Methods for Gut Microbiota: A Call for More Precise Devices. Front Cell Infect Microbiol. 2020;10:151. https:// doi.org/: 10.3389/fcimb.2020.00151.

Koppen IJN, Bosch AATM, Sanders EAM. The respiratory microbiota during health and disease: A paediatric perspective. Pneumonia 2015;6:90–100.
Available:https://doi.org/10.15172/pneu.2015.6/656

Dickson RP, Erb-Downward JR, Martinez FJ, Huffnagle GB. The Microbiome and the Respiratory Tract. Annu Rev Physiol. 2016;78:481-504. Available:https://doi.org/10.1146/annurev-physiol-021115-105238

Welp AL, Bomberger JM. Bacterial Community Interactions during Chronic Respiratory Disease. Front Cell Infect Microbiol. 2020;10:213.
Available:https://doi.org/10.3389/fcimb.2020.00213.

Man WH, de Steenhuijsen Piters WA, Bogaert D. The microbiota of the respiratory tract: gatekeeper to respiratory health. Nat Rev Microbiol. 2017;15(5):259-270.
Available:https://doi.org/:10.1038/nrmicro.2017.14.

Elgamal Z, Singh P, Geraghty P. The Upper Airway Microbiota, Environmental Exposures, Inflammation, and Disease. Medicina (Kaunas). 2021;57(8):823.
https://doi.org/:10.3390/medicina57080823

Wahyuningsih R, Adawiyah R, Sjam R, Siagian FE. Serious fungal disease incidence and prevalence in Indonesia. Mycoses. 2021; 64: 1203–12.
Available:https://doi.org/10.1111/myc.13304

Gupta VK, Paul S, Dutta C. Geography, Ethnicity or Subsistence-Specific Variations in Human Microbiome Composition and Diversity. Front Microbiol. 2017;8:1162. Available:https://doi.org/:10.3389/fmicb.2017.01162

Man, W, de Steenhuijsen Piters, W. Bogaert, D. The microbiota of the respiratory tract: gatekeeper to respiratory health. Nat Rev Microbiol 2017;15: 259–70. https://doi.org/10.1038/nrmicro.2017.14

Nardone G, Compare D. The human gastric microbiota: Is it time to rethink the pathogenesis of stomach diseases? United European Gastroenterol J. 2015;3(3):255-60. Available:https://doi.org/:10.1177/2050640614566846

Alexander SM, Retnakumar RJ, Chouhan D, Devi TNB, Dharmaseelan S, Devadas K, Thapa N, Tamang JP, Lamtha SC, Chattopadhyay S. Helicobacter pylori in Human Stomach: The Inconsistencies in Clinical Outcomes and the Probable Causes. Front Microbiol. 2021; 12:713955. Available:https://doi.org/doi:10.3389/fmicb.2021.713955.

Salama N, Hartung M, Müller A. Life in the human stomach: persistence strategies of the bacterial pathogen Helicobacter pylori. Nat Rev Microbiol 2013;11: 385–99.
Available:https://doi.org/10.1038/nrmicro3016

Shin W, Wu A, Massidda MW, Foster C, Thomas N, Lee DW, et al. A Robust Longitudinal Co-culture of Obligate Anaerobic Gut Microbiome With Human Intestinal Epithelium in an Anoxic-Oxic Interface-on-a-Chip. Front Bioeng Biotechnol. 2019;7:13.
Available:https://doi.org/10.3389/fbioe.2019.00013.

Friedman ES, Bittinger K, Esipova TV, Hou L, Chau L, Jiang J, et al. Microbes vs. chemistry in the origin of the anaerobic gut lumen. Proc Natl Acad Sci U S A. 2018;115(16):4170-4175.
Available:https://doi.org/:10.1073/pnas.1718635115.

Thursby E, Juge N. Introduction to the human gut microbiota. Biochem J. 2017;474(11):1823-36. Available:htpps://doi.org/10.1042/BCJ20160510

Franks AH, Harmsen HJ, Raangs GC, Jansen GJ, Schut F, Welling GW. Variations of bacterial populations in human feces measured by fluorescent in situ hybridization with group-specific 16S rRNA-targeted oligonucleotide probes. Appl Environ Microbiol. 1998;64(9):3336-3345. Available:https://doi.org/10.1128/AEM.64.9.3336-3345.1998

Chen X, Lu Y, Chen T, Li R. The Female Vaginal Microbiome in Health and Bacterial Vaginosis. Front Cell Infect Microbiol. 2021;11:631972. https://doi.org/10.3389/fcimb.2021.631972

Chee WJY, Chew SY, Than LTL. Vaginal microbiota and the potential of Lactobacillus derivatives in maintaining vaginal health. Microb Cell Fact. 2020;19: 203.
Available:https://doi.org/10.1186/s12934-020-01464-4

Tachedjian G, O’Hanlon DE, Ravel J. The implausible “in vivo” role of hydrogen peroxide as an antimicrobial factor produced by vaginal microbiota. Microbiome. 2018;6:29.
Available:https://doi.org/10.1186/s40168-018-0418-3

Choi SI, Won G, Kim Y, Kang CH, Kim GH. Lactobacilli Strain Mixture Alleviates Bacterial Vaginosis through Antibacterial and Antagonistic Activity in Gardnerella vaginalis-Infected C57BL/6 Mice. Microorganisms. 2022; 10(2):471.
Available:https://doi.org/10.3390/microorganisms10020471

Seib KL, Wu HJ, Kidd SP, et al. Defenses against oxidative stress in Neisseria gonorrhoeae: a system tailored for a challenging environment. Microbiology and Molecular Biology Reviews: MMBR. 2006;70(2):344-361.
Available:https://doi.org/10.1128/mmbr.00044-05.

Alhabardi SM, Edris S, Bahieldin A, Al-Hindi RR. The composition and stability of the vaginal microbiome of healthy women. J Pak Med Assoc. 2021;71(8):2045-51. Available:https://doi.org/: 10.47391/JPMA.1465. PMID: 34418027.

Auriemma RS, Scairati R, Del Vecchio G. The Vaginal Microbiome: A Long Urogenital Colonization Throughout Woman Life. Front Cell Infect Microbiol. 2021;11:686167. Available:https://doi.org/:10.3389/fcimb.2021.686167

Santiago GL, Cools P, Verstraelen H. Longitudinal study of the dynamics of vaginal microflora during two consecutive menstrual cycles. PLoS One. 2011;6(11): e28180. Available:https://doi.org/10.1371/journal.pone.0028180

Amabebe E, Anumba DOC. The Vaginal Microenvironment: The Physiologic Role of Lactobacilli. Front Med (Lausanne). 2018;5:181. Available:https://doi.org/:10.3389/fmed.2018.00181

Miller EA, Beasley DE, Dunn RR, Archie EA. Lactobacilli Dominance and Vaginal pH: Why Is the Human Vaginal Microbiome Unique? Front Microbiol. 2016;7:1936. Published 2016 Dec 8.
Available:https://doi.org/:10.3389/fmicb.2016.01936

Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, Knight R. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A. 2010;107(26):11971-5.
Available:https://doi.org/10.1073/pnas.1002601107.

Dong XD, Li XR, Luan JJ. Bacterial communities in neonatal feces are similar to mothers' placentae. Can J Infect Dis Med Microbiol. 2015;26(2):90-94.
Available:https://doi.org/:10.1155/2015/737294

Freitas AC, Chaban B, Bocking A. The vaginal microbiome of pregnant women is less rich and diverse, with lower prevalence of Mollicutes, compared to non-pregnant women. Sci Rep. 2017;7(1):9212. Available:https://doi.org/:10.1038/s41598-017-07790-9F

Shaterian N, Abdi F, Ghavidel N, Alidost F. Role of cesarean section in the development of neonatal gut microbiota: A systematic review. Open Med (Wars). 2021;16(1):624-39. Available:https://doi.org/10.1515/med-2021-0270

Ferretti P, Pasolli E, Tett A, et al. Mother-to-Infant Microbial Transmission from Different Body Sites Shapes the Developing Infant Gut Microbiome. Cell Host Microbe. 2018;24(1):133-145.e5. Available:https.//doi.org/:10.1016/j.chom.2018.06.005

Shibagaki N, Suda W, Clavaud C, Bastien P, Takayasu L, Iioka E, Kurokawa R, Yamashita N, Hattori Y, Shindo C, Breton L, Hattori M. Aging-related changes in the diversity of women's skin microbiomes associated with oral bacteria. Sci Rep. 2017;7(1):10567.
Available:htpps://doi.org/10.1038/s41598-017-10834-9.

PMID: 28874721; PMCID: PMC5585242.

Maffei VJ, Kim S, Blanchard IV E, , Luo M, Jazwinski SM, Taylor CM. Biological Aging and the Human Gut Microbiota, The Journals of Gerontology 2017;72(1) Series A: 1474–82.
Available:https://doi.org/10.1093/gerona/glx042

Kim M, Park T, Yun JI, Lim HW, Han NR, Lee ST. Investigation of Age-Related Changes in the Skin Microbiota of Korean Women. Microorganisms. 2020;8(10): 1581. Available:https://doi.org/10.3390/microorganisms8101581

Lehtimäki J, Karkman A, Laatikainen T, et al. Patterns in the skin microbiota differ in children and teenagers between rural and urban environments. Sci Rep. 2017;7: 45651. Available:https://doi.org/10.1038/srep45651

Badal VD, Vaccariello ED, Murray ER. The Gut Microbiome, Aging, and Longevity: A Systematic Review. Nutrients. 2020;12 (12):3759. Available:https://doi.org/:10.3390/nu12123759

Benno Y, Endo K, Mizutani T, Namba Y, Komori T, Mitsuoka T. Comparison of fecal microflora of elderly persons in rural and urban areas of Japan. Appl Environ Microbiol. 1989;55(5):1100-5.
Available:https://doi.org/10.1128/aem.55.5.1100-1105.1989

Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and resilience of the human gut microbiota. Nature. 2012;489(7415):220-230.
Available:https://doi.org/:10.1038/nature11550

Tomova A, Bukovsky I, Rembert E. The Effects of Vegetarian and Vegan Diets on Gut Microbiota. Front Nutr. 2019;6:47. Available:https://doi.org/10.3389/fnut.2019.00047

De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA.;107(33):14691-6. Available:https://doi.org/10.1073/pnas.1005963107.

Gehrig JL, Venkatesh S, Chang HW, Hibberd MC, Kung VL, Cheng J, et al. Effects of microbiota-directed foods in gnotobiotic animals and undernourished children. Science. 2019;365(6449): eaau4732.
Available:https://doi.org/10.1126/science.aau4732.

Fuhren J, Schwalbe M, Boekhorst J, Rösch C, Schols HA, Kleerebezem M. Dietary calcium phosphate strongly impacts gut microbiome changes elicited by inulin and galacto-oligosaccharides consumption. Microbiome. 2021;9(1):218. Available:https://doi.org/10.1186/s40168-021-01148-0

Bovee-Oudenhoven IM, ten Bruggencate SJ, Lettink-Wissink ML, van der Meer R. Dietary fructo-oligosaccharides and lactulose inhibit intestinal colonisation but stimulate translocation of salmonella in rats. Gut. 2003;52(11):1572-1578.
Available:https://doi.org/10.1136/gut.52.11.1572

Vacca M, Raspini B, Calabrese FM. The establishment of the gut microbiota in 1-year-aged infants: from birth to family food. Eur J Nutr; 2022.
Available:https://doi.org/10.1007/s00394-022-02822-1

Ma J, Li Z, Zhang W. Comparison of gut microbiota in exclusively breast-fed and formula-fed babies: a study of 91 term infants. Sci Rep. 2020;10(1):15792. Available:https://doi.org/:10.1038/s41598-020-72635-x

Martin CR, Ling PR, Blackburn GL. Review of Infant Feeding: Key Features of Breast Milk and Infant Formula. Nutrients. 2016;8(5):279. Available:https://doi.org/10.3390/nu8050279

Wang Z, Neupane A, Vo R, White J, Wang X, Marzano SL. Comparing Gut Microbiome in Mothers' Own Breast Milk- and Formula-Fed Moderate-Late Preterm Infants. Front Microbiol. 2020;11:891.
Available:https://doi.org/10.3389/fmicb.2020.00891

Rahim MA, Saeed F, Khalid W, Hussain M, Anjum FM. Functional and nutraceutical properties of fructo-oligosaccharides derivatives: a review. International Journal of Food Properties, 2021;24:1588 - 02.
Available:https://doi.org/10.1080/10942912.2021.1986520

Mao B, Gu J, Li D. Effects of Different Doses of Fructooligosaccharides (FOS) on the Composition of Mice Fecal Microbiota, Especially the Bifidobacterium Composition. Nutrients. 2018;10(8):1105.
Available:https://doi.org/10.3390/nu10081105

Pokusaeva K, Fitzgerald GF, van Sinderen D. Carbohydrate metabolism in Bifidobacteria. Genes Nutr. 2011;6(3):285-306.
Available:https://doi.org/10.1007/s12263-010-0206-6

May T, Mackie RI, Fahey GC Jr, Cremin JC, Garleb KA. Effect of fiber source on short-chain fatty acid production and on the growth and toxin production by Clostridium difficile. Scand J Gastroenterol. 1994;29(10):916-22.
Available:https://doi.org/10.3109/00365529409094863.

Smith AH, Mackie RI. Effect of condensed tannins on bacterial diversity and metabolic activity in the rat gastrointestinal tract. Appl Environ Microbiol. 2004;70(2):1104-1115. Available:https://doi.org/10.1128/AEM.70.2.1104-1115.2004

Mumcuoglu I. Interactions between Parasites and Human Microbiota. European Journal of Therapeutics. 2019;25:6-11.

DI:10.5152/EurJTher.2019.18080. Available:https://doi.org/ 105152/EurJTher.2019.18080

Maryanti E, Lesmana SD, Mandela H. Deteksi Protozoa Usus Oportunistik pada Penderita Diare Anak di Puskesmas Rawat Inap Pekanbaru- Jurnal Ilmu Kedokteran (Journal of Medical Science). 2017; 9(1):22-6.

Muadica AS, Balasegaram S, Beebeejaun K, Köster PC, Bailo B, Hernández-de-Mingo M, Dashti A, Dacal E, Saugar JM, Fuentes I, Carmena D. Risk associations for intestinal parasites in symptomatic and asymptomatic school children in central Mozambique. Clin Microbiol Infect. 2021;27(4):624-9.
Available:https://doi.org/10.1016/j.cmi.2020.05.031.

Burgess SL, Gilchrist CA, Lynn TC, Petri WA Jr. Parasitic Protozoa and Interactions with the Host Intestinal Microbiota. Infect Immun. 2017;85(8):e00101-17.
Available:https://doi.org/:10.1128/IAI.00101-17.

Madison A, Kiecolt-Glaser JK. Stress, depression, diet, and the gut microbiota: human-bacteria interactions at the core of psychoneuroimmunology and nutrition. Curr Opin Behav Sci. 2019;28:105-10. Available:https://doi.org/:10.1016/j.cobeha.2019.01.011

Galland L. The gut microbiome and the brain. J Med Food. 2014;17(12):1261-1272. Available:https://doi.org/10.1089/jmf.2014.7000

Clapp M, Aurora N, Herrera L, Bhatia M, Wilen E, Wakefield S. Gut microbiota's effect on mental health: The gut-brain axis. Clin Pract. 2017;7(4):987.
Available:https://doi.org/10.4081/cp.2017.987

Edlund C, Nord CE. Effect on the human normal microflora of oral antibiotics for treatment of urinary tract infections. J Antimicrob Chemother. 2000;46(S1):41-8; discussion 63-5. PMID:11051623.

Chattopadhyay MK. Use of antibiotics as feed additives: a burning question. Front Microbiol. 2014;5:334.
Available:https://doi.org/:10.3389/fmicb.2014.00334

Manyi-Loh C, Mamphweli S, Meyer E, Okoh A. Antibiotic Use in Agriculture and Its Consequential Resistance in Environmental Sources: Potential Public Health Implications. Molecules. 2018;23 (4):795. Available:https://doi.org/:10.3390/molecules23040795

Schardey J, von Ahnen T, Schardey E. Antibiotic Bowel Decontamination in Gastrointestinal Surgery-A Single-Center 20 Years' Experience. Front Surg. 2022;9: 874223. Available:https://doi.org10.3389/fsurg.2022.874223

Oostdijk EA, de Smet AM, Blok HE, Thieme Groen ES, van Asselt GJ, Benus RF. Ecological effects of selective decontamination on resistant gram-negative bacterial colonization. Am J Respir Crit Care Med. 2010;181(5):452-7.
Available:https://doi.org/10.1164/rccm.200908-1210OC.

Choy A, Freedberg DE. Impact of microbiome-based interventions on gastrointestinal pathogen colonization in the intensive care unit. Therap Adv Gastroenterol. 2020;13:17562848209394 47. Available:https://doi.org/10.1177/1756284820939447
  • Abstract View: 61 times
    PDF Download: 24 times

Download Statistics

Downloads

Download data is not yet available.
  • Linkedin
  • Twitter
  • Facebook
  • WhatsApp
  • Telegram
Make a Submission / Login
Information
  • For Readers
  • For Authors
  • For Librarians
Current Issue
  • Atom logo
  • RSS2 logo
  • RSS1 logo


© Copyright 2010-Till Date, Journal  of Advances in Microbiology. All rights reserved.