Characterization of Aqueous Extract of Moringa oleifera Leaves using GC-MS Analysis

Ifeoma Ijeoma Anekwe *

Department of Microbiology, Federal University of Technology, Owerri, Imo State, Nigeria.

Chikwendu Chinwe Ifenyinwa

Department of Microbiology, Federal University of Technology, Owerri, Imo State, Nigeria.

Ekperechi Sabinus Amadi

Department of Microbiology, Federal University of Technology, Owerri, Imo State, Nigeria.

Nwogwugwu Ngozi Ursulla

Department of Microbiology, Federal University of Technology, Owerri, Imo State, Nigeria.

Ihenetu Francis Chukwuebuka

Department of Microbiology, Imo State University, Owerri, Nigeria.

*Author to whom correspondence should be addressed.


Abstract

Background: The Evaluation of plants for its bioactive compounds is of great importance to researchers because of their therapeutic properties which can be harnessed to serve as alternatives to antibiotics or the development of novel drugs to fight human infectious diseases. Moringa oleifera is a member of the Moringaceae family with nutritional and medicinal properties.

Aim: To identify the bioactive constituents present in Moringa oleifera leaves using Gas chromatography-Mass spectrometry.

Methodology: The bioactive compounds were extracted using the Soxhlet method of extraction and was analyzed using Gas chromatography mass-spectrometry.

Results: The chromatogram of the GC-MS analysis used to identify the bioactive constituents present in the aqueous extract of Moringa oleifera leaves extract showed the presence of seventy-eight compounds. This includes 1H-Indene, 2-pyridinyl–methyl ester (9.82%), Anthracene, 9-(2-propenyl) (6.72%), 2,6- Lutidine 3,5- dichloro-4-dideiylthio (5.67%) and various other compounds which were identified as low level.

Conclusions: The GC-MS analysis of Moringa oleifera showed the presence of bioactive compounds. These compounds are of high importance because they can be used in the production of new antimicrobials due to their valuable medicinal and therapeutic properties.

Keywords: GC-MS analysis, chemical constituents, Moringa oleifera, aqueous extract, bioactive compounds


How to Cite

Anekwe , I. I., Ifenyinwa , C. C., Amadi , E. S., Ursulla , N. N., & Chukwuebuka , I. F. (2023). Characterization of Aqueous Extract of Moringa oleifera Leaves using GC-MS Analysis. Journal of Advances in Microbiology, 23(6), 8–18. https://doi.org/10.9734/jamb/2023/v23i6727

Downloads

Download data is not yet available.

References

Walter A, Samuel W, Peter A, Joseph O. Antibacterial activity of Moringa oleifera and Moringa stenopetala methanol and n-hexane seed extracts on bacteria implicated in waterborne diseases. Afr J Microbiol Res. 2011;5(2):153-7. DOI: 10.5897/AJMR10.457.

Patel P, Nivedita P, Dhara P, Sharav D, Dhananjay M. Phytochemical analysis and antifungal activity of Moringa oleifera. Int J Pharm Pharm Sci. 2014;6(5):144-7.

Thilza IB, Sanni S, Isah ZA, Sanni FS, Talle M, Joseph MB. In vitro antimicrobial activity of water extract of Moringa oleifera leaf stalk on bacteria normally implicated in eye diseases. Academia Arena 2. 2010;6:80-2.

Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: problems and promises. Mol Pharm. 2007;4(6):807-18. DOI: 10.1021/mp700113r,

Gustavo HFV, Jozeanne AM, Angela MA, Renata AC, Regine HSDFV. Antibacterial effect (in vitro) of Moringa oleifera and Annona muricata against Gram-positive and Gram-negative bacteria. Rev Inst Med Trop S Paulo. 2010;52(3):129-32. DOI: 10.1590/s0036-46652010000300003.

Faizi S, Siddiqui BS, Saleem R, Siddiqui S, Aftab K, Gilani AH. Isolation and structure elucidation of new nitrile and mustard oil glycosides from Moringa oleifera and their effect on blood pressure. J Nat Prod. 1994;57(9):1256-61.

DOI: 10.1021/np50111a011

Manguro LO, Lemmen P. Phenolics of Moringa oleifera leaves. Nat Prod Res. 2007;21(1):56-68. DOI: 10.1080/14786410601035811

Igwe KK, Nwankwo PO, Otuokere IE, Ijioma SN, Amaku FJ. GCMS analysis of Phytocomponents in the methanolic Extract of Moringa oleifera Leave. J Res Pharm Sci. 2015;2(11):1-6.

Bhalla N, Ingle N, Patri SV, Haranath D. Phytochemical analysis of Moringa oleifera leaves extracts by GC-MS and free radical scavenging potency for industrial applications. Saudi J Biol Sci. 2021; 28(12):6915-28.

DOI: 10.1016/j.sjbs.2021.07.075

Raheela J, Muhammad S, Amer J, Muhammad A. Microscopic evaluation of the antimicrobial activity of seed extracts of Moringa oleifera. Pak J Bot. 2008;40(4): 1349-58.

Jensen WB. The origin of Soxhlex Extraction. J Clin Educ. 2007;84(12): 1913-4. DOI: 10.1021/ed084p1913.

Buss AD, Butler MS, editors. Natural product chemistry for drug discovery, The Royal Society of Chemistry, Cambridge.2010;153.

Mariswamy Y, Edward GW, Johnson M. Chromatographic finger print analysis of steroids in Aervalanasa L. by HPTLC technique. Asian pal. J Trop Biomed. 2011;1:428-33. DOI: 10.1016/S2221-1691(11)60094-4.

Enas JK, Duha AA. Phytochemical characterization using GC-MS analysis of methanolic extract of Moringa oleifera (family Moringaceae) plant cultivated in Iraq. Chem Mater Research. 2014;6(5):9-26.

Rodrigues HG, Vinolo MA, Magdalon J, Fujiwara H, Cavalcanti DM, Farsky SH et al. Dietary free oleic and linoleic acid enhances neutrophil function and modulates the inflammatory response in rats. Lipids. 2010;45(9):809-19.

DOI: 10.1007/s11745-010-3461-9

Tanious FA, Jenkins TC, Neidle S, Wilson WD. Substituent position dictates the intercalative DNA-binding mode for anthracene-9,10-dione antitumor drugs. Biochemistry. 1992;31(46):11632-40. DOI: 10.1021/bi00161a050

Yanishlieva NV, Marinova EM, Gordon MH, Raneva VG. Antioxidant activity and mechanism of action of thymol and carvacrol in two lipid systems. Food Chem. 1999;64(1):59-66. DOI: 10.1016/S0308-8146(98)00086-7.

Aeschbach R, Löliger J, Scott BC, Murcia A, Butler J, Halliwell B et al. Antioxidant actions of thymol, carvacrol, 6-gingerol, zingerone and hydroxytyrosol. Food Chem Toxicol. 1994;32(1): 31-6. DOI: 10.1016/0278-6915(84)90033-4

Didry N, Dubreuil L, Pinkas M. Activity of thymol, carvacrol, cinnamaldehyde and eugenol on oral bacteria. Pharm Acta Helv. 1994;69(1):25-8. DOI: 10.1016/0031-6865(94)90027-2.

Ozen T, Demirtas I, Aksit H. Determination of antioxidant activities of various extracts and essential oil compositions of Thymus praecox subsp. skorpilii var. skorpilii. Food Chem. 2011;124(1):58-64.

DOI: 10.1016/j.foodchem.2010.05.103.

Khan ST, Khan M, Ahmad J, Wahab R, Abd-Elkader OH, Musarrat J et al. Thymol and carvacrol induce autolysis, stress, and growth inhibition and reduce the biofilm formation by Streptococcus mutans. AMB Express. 2017;7(1):49.

DOI: 10.1186/s13568-017-0344-y

Prudhomme DR, Park M, Wang Z, Buck JR, Rizzo CJ. Synthesis of 2′-deoxyribonucleosides: Β-3′,5′-di-o-benzoylthymidine. Org Synth. 2000;77: 162. DOI: 10.15227/orgsyn.077.0162.

Anderson DR, Hegde S, Reinhard E, Gomez L, Vernier WF, Lee L et al. Aminocyanopyridine inhibitors of mitogen activated protein kinase-activated protein kinase 2 (MK-2). Bioorg Med Chem Lett. 2005;15(6):1587-90.

DOI: 10.1016/j.bmcl.2005.01.067

Tripathi RP, Verma SS, Pandey J, Agarwal KC, Chaturvedi V, Manju YK et al. Search of antitubercular activities in tetrahydroacridines: synthesis and biological evaluation. Bioorg Med Chem Lett. 2006;16(19):5144-7.

DOI: 10.1016/j.bmcl.2006.07.025

Naik HR, Naik HS, Naik TR, Naika HR, Gouthamchandra K, Mahmood R et al. Synthesis of novel benzo[h]quinolines: wound healing, antibacterial, DNA binding and in vitro antioxidant activity. Eur J Med Chem. 2009;44(3):981-9. DOI: 10.1016/j.ejmech.2008.07.006

Shu N, Jee C, Kumar R. Gas chromatography study of methanolic leave extract of Moringa oleifera Lam. Int J Curr Microbiol Appl Sci. 2020;9(2): 2590-5. DOI: 10.20546/ijcmas.2020.902.295.

Enerijiofi KE, Akapo FH, Erhabor JO. GC–MS analysis and antibacterial activities of Moringa oleifera leaf extracts on selected clinical bacterial isolates. Bull Natl Res Cent. 2021;45(1):2-10. DOI: 10.1186/s42269-021-00640-9.

Iguchi K, Okumura N, Usui S, Sajiki H, Hirota K, Hirano K. Myristoleic acid, a cytotoxic component in the extract from Serenoa repens, induces apoptosis and necrosis in human prostatic LNCaP cells. Prostate. 2001;47(1):59-65. DOI: 10.1002/pros.1047

Sutton M. Superior mediastinal obstruction treated with demecolcine followed by radiotherapy. Br Med J. 1965;1(5433): 495-6. DOI: 10.1136/bmj.1.5433.495